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Trustworthy and Intelligent COVID-19 Diagnostic

IoMT Through XR and Deep-Learning-Based
Clinic Data Access

Yonghang Tai ', Bixuan Gao, Qiong Li, Zhengtao Yu

Abstract—This article presents a novel extended real-
ity (XR) and deep-learning-based Internet-of-Medical-Things
(IoMT) solution for the COVID-19 telemedicine diagnostic,
which systematically combines virtual reality/augmented reality
(AR) remote surgical plan/rehearse hardware, customized 5G
cloud computing and deep learning algorithms to provide real-
time COVID-19 treatment scheme clues. Compared to existing
perception therapy techniques, our new technique can signifi-
cantly improve performance and security. The system collected
25 clinic data from the 347 positive and 2270 negative COVID-
19 patients in the Red Zone by 5G transmission. After that,
a novel auxiliary classifier generative adversarial network-based
intelligent prediction algorithm is conducted to train the new
COVID-19 prediction model. Furthermore, The Copycat network
is employed for the model stealing and attack for the IoMT to
improve the security performance. To simplify the user interface
and achieve an excellent user experience, we combined the Red
Zone’s guiding images with the Green Zone’s view through the
AR navigate clue by using 5G. The XR surgical plan/rehearse
framework is designed, including all COVID-19 surgical req-
uisite details that were developed with a real-time response
guaranteed. The accuracy, recall, Fi-score, and area under the
ROC curve (AUC) area of our new IoMT were 0.92, 0.98, 0.95,
and 0.98, respectively, which outperforms the existing percep-
tion techniques with significantly higher accuracy performance.
The model stealing also has excellent performance, with the AUC
area of 0.90 in Copycat slightly lower than the original model.
This study suggests a new framework in the COVID-19 diagnos-
tic integration and opens the new research about the integration
of XR and deep learning for IoMT implementation.

Index Terms—Auxiliary classifier generative adversarial
network (ACGAN), COVID-19, extended reality (XR), Internet
of Medical Things (IoMT), security.
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I. INTRODUCTION

O DATE, the Internet-of-Medical-Things (IoMT) tech-

nology has been recognized and widely applied due
to its high performance and practicality. The IoMT enables
the application of deep learning for automated and accu-
rate prediction of many diseases, assisting and facilitating
effective and efficient medical treatment [1]-[3]. However,
there are fewer studies that investigate the diagnostic IToMT
through telemedicine and deep-learning-based attacks target-
ing the services deployed on the IoMT devices, particularly,
the IToMT-based Al services. Since the extended reality (XR)
technology, which includes the virtual reality (VR), augmented
reality (AR), and the mixed reality (MR) [4]-[6], refer to the
real/virtual environments generated by computer graphics and
wearables has been widely applicated in the medical field,
especially in the telemedicine implementations.

During the outbreak of the pandemic of COVID-19,
IoMT can even be used to detect main symptoms ubiqui-
tously, by the data collection from the infected area and
customize the treatment plan based on aggregated IoMT
data. Inspired by the aforementioned approaches, the XR
implementation is introduced into the COVID-19 diagnostic
IoMT. Furthermore, a customized XR-enabled COVID-19 sur-
gical planning/rehearse strategy is also being developed.
Taking into account the previously mentioned deep-learning-
based IoMT platform, a novel deep neural network (DNN)
algorithm has been developed to predict the COVID-19 is
positive or not by data 5G data transformation. Apart from
that, to achieve a better human ergonomics performance, we
visualized all the COVID-19 diagnostic clues from our XR sur-
gical decision system. Third, we used a Copycat-based access
control system to protect the patient’s clinic data used for ren-
dering the XR images. We adopted a simplified approach based
on Wang et al. [7], which allows electronic medical data to
be accessed and shared on cloud storage. More specifically,
each visit request to any patient’s clinic data will be recorded
into the customized 5G cloud together with a timestamp,
requestor’s ID, patient ID, and image ID.

Three original contributions are presented in this article.

1) For the first time, the deep auxiliary classifier gen-

erative adversarial network (ACGAN)-based prediction
and telemedicine surgical guiding methods are proposed
for the COVID-19 diagnostic with 5G IoMT, which
supplemented the shortage of medical staff and
treatment of the Red Zone.

© IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.
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2) Copycat ACGAN is employed to steal and attack for the
IoMT model to evaluate security performance. The pri-
vacy of COVID-19 patients has been guaranteed during
IoMT data transmission.

3) A novel XR-based COVID-19 surgical plan/rehearse
prototype has been implemented for evaluating the new
techniques and ideas. This work opens new research on
the integration of XR and deep learning for telesurgical
applications.

II. RELATED WORK
A. XR-Based Implementations for Telemedicine IoMT

In order to promote doctors to acquire more information
conveniently during the operation, the XR-based IoMT
strategy has been evaluated, which is the first method
above-mentioned, to rebuild the 3-D virtual patient from the
medical images and superimpose it on the real patient in
an operating room for the 3-D surgical guiding [8]-[10].
A traditional XR system includes two steps: 1) 3-D recon-
struction of anatomically based on CT/MRI images and
2) the registration step between the reconstructed model
and the patient [11]. Although existing communal or soft-
ware could automatically complete the 3-D rebuilt step, for
example, the Osirix, the Mimics, and the 3-D slicer, the semi-
automatic manual correction by the professional surgeon, is
still the most reliable strategy in the clinic applications [12].
The Curve (Brain Brainlab AG, Germany) system [13] and the
Stealth Station are designed to XR navigation of MIS [14];
the NavSuite3 (Stryker Corporation, USA) is designed for
the spine surgery [15]; the Navigation Panel Unit (Storz,
Germany) is used for the endoscopic surgical navigation [16];
and SCOPIS (Scopis, Germany) [17], with the aid of Microsoft
HoloLens, provides ENT, CMF, neuro, and spine naviga-
tion. Nevertheless, the critical issues of these commercial
systems are implemented with either visual-guide or optical-
guide mechanisms. In other words, the infrared-based NDI
Polaris is the vital unit supporting all of these navigation
schemes. Unfortunately, two serious challenges still need to
be addressed for the NDI Polaris system: 1) a precise registra-
tion between the 3-D static image-based reconstructed model
and the real patient is the most challenging issue due to the
medical image caused by the human respiration. Furthermore,
the heterogeneity of the lesions and 2) the IR-based navigation
is usually limited by the disadvantage of the signal blocking
during the real operations, surgeons’ operation area should
not occlude the infrared transmit trajectory which also leads
to many inconveniences in IoMT. To the best of our knowl-
edge, in the operation room, a majority of XR guiding surgical
applications focus on the medial image fusion algorithms and
the routing planning. Research has not yet introduced many
intuitive perceptions, such as tactile feedback through the 5G
transmission, which would significantly improve the accuracy
of the surgical performance.

Meanwhile, due to the outbreak of COVID-19, there are
increasing interest in the telemedicine diagnostic, which can
provide a treatment plan without exposing doctors and patients
into the risk of infection [18], [19]. Shelton et al. [20] sur-
veyed that within the first two weeks of the stay-at-home order,

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 21, NOVEMBER 1, 2021

the number of telemedicine services increased to about 86%
or higher in the U.S., except for the hospital in Fayetteville,
NC, USA, where telehealth consultations increased from
2% to 24%. Triantafillou and Rajasekaran [21] suggested that
telemedicine allows for examination of a patient’s health
and helps to educate patients virtually on physical examina-
tion changes and symptom that should prompt a discussion
with their physicians. Similarly, results from Patel et al. [22]
indicate that patient stored heath information can provide
guidance for future examination. Additionally, Li et al. [23]
deployed an online platform to reduce the number of in-person
visits thereby lessening face-to-face contact among patients
and physicians, which suggests that telemedicine provides an
effective triage, screening, and treatment method during the
COVID-19 pandemic.

B. Al-Based COVID-19 IoMT Platform

COVID-19 systems can quickly diagnose
COVID-19 pathogens and found different types of attacks
[24]-[28]. In addition, DL Inference models were tested,
including acoustic emission disturbances to the classifier,
launching a black-box attack using the Clarifai REST
API model, and using the back door attack to update the
model [29]. Holshue et al. developed a research-centric
CDSS. The device that leverages the power of the Internet of
Things to collect real-time physiological data from patients
on ventilators and other medical devices. To monitor and
manage the conditions of patients in intensive care units,
doctors can prioritize their care, aiming to improve diagnosis,
prediction, and event recognition in intensive care units.
Additionally, encrypted files are used to ensure the safety
of patient information [30]. Chan et al. designed a chronic
kidney disease prediction system based on the Internet
of Things (IoMT) platform, an adaptive hybridized deep
convolutional neural network. CT image data from renal
cancer were used, and the missing values were processed with
median estimates. The dual training method of learning and
activation mechanisms can effectively avoid kidney disease.
Rehm et al. [31] have designed and proposed a new privacy
anonymous Internet-of-Things model. Moreover, an RFID
proof of concept is provided for this model. The blockchain is
used to simulate contract deployment and function execution.
The model will make it easier to identify groups of infected
contacts and provide mass isolation while protecting individual
privacy [32]. Chamola et al. conducted detailed research on the
Internet of Things, drones, blockchain, artificial intelligence,
and 5G. During the COVID-19 epidemic, the medical Internet
of Things can effectively collect, analyze, and transmit clinical
data. Drones ensure minimal human interaction and can also
be used to reach areas that are unreachable by humans. Robots
and autonomous vehicles have also contributed significantly
to the field of automatic disinfection by reducing human
contact. Artificial intelligence plays an important role in risk
prediction and prognosis treatment [33], [34].

C. Cyberattacks With Deep Learning Network

When it comes to the IoMT, we should know that there
is a very close connection between IoMT and the IoT. An
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Customized design of COVID-19 diagnostic IoMT through XR and deep neural model, which has been implemented in the prevention and treatment

of COVID-19 in China. The Red Zone is an epidemiological term, which means the COVID-19 infected area, especially in Wuhan and Hubei. Clinic data are
collected from the OPC of Red Zone by the cell phone, tablet, and laptop. After that, the 5G transmission is employed to transfer and compute the medical
data for the COVID-19 prediction using the 5G cloud (Alibaba Cloud). Finally, the professional respiratory physician, and the thoracic surgeon from the Green
Zone, such as Shanghai and Kunming, could make a diagnosis and detailed surgical plan through the IoMT application layer with high efficiency and safety.

idea was put forward by Hu er al that IoMT could be
used in the medical industry must be a truth [35]. After
five years, a healthcare monitoring system had been made
by Jagadeeswari et al. [36] using significant data training,
which proved the idea, which put forward by Hu had become
a truth. Nowadays, with an increasing number of cyberat-
tacks have appeared, Flynn ef al. [37] discovered that the
[IoMT system based on a mobile platform is straightforward
to be breached by various network attacks. A series of evi-
dence can be presented to support our attack model. Deep
learning has gained prominence in many fields, including
computer vision and cybersecurity, such as vulnerability detec-
tion [38], [39]. In 2014, however, Szegedy et al. [40] and
follow-up studies [41] demonstrated that small changes to the
data as images are entered can attack deep learning techniques.

Subsequently, Dalvi ef al. [42] and Lowd and Meek [43]
have proved that in the linear classification of spam
detection.

Barreno et al. [44] pointed out that with the development
of cyberattacks, both ML algorithms and DL algorithms can
be attacked by a malicious adversary. It can be seen from the
relevant literature that there are three different attack modes of
adversarial attack, including white-box attack, gray-box attack,
and black-box attack. The difference between them is how
much is known about the target model (including data sets,
parameters/hyperparameters, deep learning models, and algo-
rithms). Because of the similarity of COVID-19 text data,
among the many ways of adversarial attacks, the one that can
have the most impact on our network is the gray-box attack.
Crafted adversarial samples have been used against a DNN,
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Fig. 2. ACGAN-based COVID-19 intelligent prediction network: the real-world clinical data are collected, and then some preprocessing including samples
wrangling (such as selecting the demanding data and setting correct data formats). The KNN algorithm is used for imputing missing data by finding the k-closest
neighbors to the observation with missing data. After that, imputing them based on the nonmissing values in the neighbors. KNN for missing data imputation
and resampling techniques for solving the problem of imbalance samples between normal subjects and COVID-19 subjects in a retrospective cohort. The
processed training set is employed to train the ACGAN prediction model. After that, the well-trained discriminator of ACGAN is used to forecasting the
samples from a prospective cohort. Finally, the interpretability of this system is produced by CEM to give an analysis for medical significance.

aiming to create confrontation examples by approaching the
decision boundary of the target DNN [45].

III. NEW SYSTEM DESIGN

In this section, we addressed the COVID-19 diagnos-
tic IoMT through XR and deep neural model design and
implementation, as demonstrated in Fig. 1. A new k-nearest
neighbor (KNN)-based ACGAN model is developed to esti-
mate the COVID-19 prediction accuracy, and the XR platform
is employed for the remote diagnoses. After that, the 5G
transmission is employed to transfer and compute the med-
ical data for the COVID-19 prediction using the 5G cloud.
AR-remote diagnose, and XR surgical implementations are
developed, we also present the evaluation approaches, which
evaluate the performances with different kinds of deep neural
algorithms.

A. ACGAN-Based COVID-19 Intelligent Network Design

The whole technological process of the ACGAN-based
COVID-19 intelligent prediction system is demonstrated in
Fig. 2. The real-world clinical data are collected and then some
preprocessing, including samples wrangling (such as selecting
the demanding data and setting correct data formats), KNN for
missing data imputation and resampling techniques for solving
the problem of imbalance samples between normal subjects
and COVID-19 subjects in a retrospective cohort. The pro-
cessed training set is employed to train the ACGAN prediction
model. After that, the well-trained discriminator of ACGAN

is used to forecasting the samples from the prospective cohort.
Finally, the interpretability of this system is produced by the
contrastive explanations method (CEM) to give an analysis of
medical significance. The further descriptions of each part of
ACGAN-based COVID-19 intelligent prediction are provided
as follows.

1) KNN for Missing Data Imputation: A technique widely
used for handling with the extremely imbalanced distribu-
tion of samples is regarded as resampling. In resampling, to
make up for the imbalanced class, a bias is used for rese-
lecting more samples from one class, which has a smaller
number of data than another type. The process of resampling
has mainly consisted of two parts: 1) deleting some samples
from the majority class, which is called undersampling and
2) augmenting samples from the minority class, which is called
oversampling.

Due to the influence of elements, such as broken system
and fabricated error, the missing of recording clinical data is
inevitable. Moreover, much worthwhile information on the
original data would be lost resulting in the decreases of fore-
casting accuracy and the mistaken research result, if only to
delete these missing data. In this work, the KNN-based miss-
ing data estimation algorithm is utilized to solve this thorny
problem. It is more suitable for simply binary problems with
small-scale and low-dimensional data. Missing data is imputed
by occurring rather than constructed data, which preserves the
original structure of data. As a nonparametric and nonmapping
imputation method, the condition of model misspecification
can, to a great extent, be avoided. In the KNN, the k£ samples
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nearest to the missing sample are searched from all complete
instances in the data set, and then the corresponding miss-
ing value is padded with the mean value of these using the
mean value samples. In KNN, the (X, Y, Z) is defined as the
features of samples, and then their k-nearest neighbors are
Dy = {Xk, Yr, Z)j =1, 2, ..., k}. The KNN estimator
can be described as follows:

Y = argmax,
Xk, Yk, Zi)€Dy

where X is the target sample, Y; is a missing feature in
X, Zy is the classification which is O or 1 in the current
task, n represents the value within the range of the Y, and
C(Yy = n) represents a discriminant function that outputs O or
1 depending on its argument is false or true.

In order to choose the k samples nearest to the target sample,
the similarity between the target sample and the correspond-
ing k-nearest samples must be minimum. The commonly used
approach called the Minkowski distance (or its variants) is
given as follows:

Dis(i, j)

= \q/|xi1 =gt |* 4 Pz = x|+ g —

(xip € Xi, xjp € X))

where g represents a positive integer, which is the Minkowski
coefficient, the Minkowski distance 1is defined as the
Manhattan distance, when ¢ = 1 and it is described as the
Euclidean distance when g = 2. In the current system, ¢ = 1
is used.

2) Deep Training Module Design: Deep learning tech-
niques are widely used in medical application, prediction, and
retrieval domains, promising excellent performance in classifi-
cation fields. The ACGANs were further improved on the basis
of the CGAN through the incorporation of the idea of mutual
information in InfoGAN [46]. Unlike traditional generative
networks which are based on the unsupervised models, the
supervised learning method is used in the generated adversarial
concept. Furthermore, the internal structure of ACGAN adds
the portion is embedding the class information into the input
of the generator and compares with traditional CGAN. The
additional task for ACGAN is to classify the category of sam-
ples by expanding an auxiliary judgment layer in discriminator,
which can output the class labels of input samples [47]. Due
to the speciality of the network, the objective function of
ACGANs is divided into two parts: 1) the log likelihood of
the correct source Lg and 2) the log likelihood of the correct
class L¢

Ls = E[logp(s = real | Xrea) | + E[log p(s = fake|G(2))]
Ly = E[logp(Y = y | Xeea)] + E[log p(Y = |G(2))]
where g represents the created clinical sample. The discrimi-

nator D is trained to find the maximum of Lg + Ly, while the
generator is trained to find the maximum of Ly — Lg.
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3) Contrastive Explanations Method for Prediction System:
The CEM is an Al novel algorithm created and implemented
by IBM research, which can provide contrastive explanations
for black-box models such as DNNs well known as black-box
models. CEM can be effectively used to create meaningful
descriptions in different domains that are presumably easier
to consume as well as more accurate [48]. CEM of look-
ing for the correlation positive/negative is expressed as an
optimization problem of using perturbation variable & that is
used to explain how the model’s deep learning model to decide
prediction results according to the input features. In finding
pertinent negatives (PNs), X is defined as the feasible data;
(x0, Y0) xop € X is an example where yq is the class label
predicted by a neural network model; x € X is a modified
example which is defined as a perturbation variable § applied
to xo : x = xp + J; and y; is the corresponding prediction
results. For any natural example x, CEM dedicates to find
an interpretable perturbation and thus study the difference
between the argmax;[Pred(xp)]; and argmax;[Pred(xo + §)];,
where Pred(-) is the output consisting of prediction proba-
bilities for all classes. The implementations of CEM finding
PN are formulated as follows:

. neg 2
. 8 Sl + 118
(Sg)l(l/r)lcoc Je = (x0,8) + BlSl + 118113

+ ylxo+ 8 — AE(xo + 8)II2

where f,? “(xo, 8) is an objective function designed to encour-
age x to be predicted as a different class than yg =
argmax;[Pred(xp)];. [Pred(xop, §)]; represents the ith class prob-
abilities of x, k refers to confidence parameter controlling the
separation between [Pred(x)],, and max;., [Pred(x)];, B3],
and || ||% called the elastic net regularizer, which is used
for efficient feature selection in high-dimensional learning
problems [38]. |lxo + 8 — AE(xo + 6)||% is an Ly reconstruc-
tion error of x evaluated by autoencoder, and c, 8, and y are
the associated regularization coefficients.

B. XR-Based COVID-19 Remote Diagnosis Platform

1) COVID-19 Patient-Specific CT 3-D Rendering: The CT
images for the visual rendering are reconstructed based on the
patient-specific clinic images data, which developed with the
platform of the integrated development environment (IDE) of
VS2015. A 55-year-old male COVID-19 patient is demon-
strated with two days history of pharyngalgia, headache,
rhinorrhea, and fever. He did not contact any COVID-
19 patients, without the history of hypertension and with
a 30-year smoker. The patient’s chest CT scan (February 8§,
2020) demonstrated the unilateral peripheral distribution of
ground-glass opacities, as shown in Fig. 3. Laboratory inves-
tigations illustrated that elevated higher count of neutrophil
(9.2x109/L, normal range, 2.0-7.5x 109/L), white blood cell
count (3.62x109/L, normal range, 4-10x109/L), and lym-
phocyte count was slightly reduced at 0.42x109/L (normal
range 0.8—4.0x109/L). We imported patients’ CT images first,
use the DICOM format image to reconstruct a surgical sim-
ulation demo. Four professional thoracic surgeons manually
corrected the COVID-19 infection region of interest after that,
segmentation functions like threshold and area growing are
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Fig. 3.  XR COVID-19 surgical IoMT simulator framework: the first part
is the COVID-19 patient-specific medical image processing from the clinic
data collection. The second part is the XR visuo-haptic reconstruction with
the medical data. The third part is the audio rendering procedure, stored the
audio details of OR-based heart monitor, anesthesia, and breathing apparatus,
and line four is the surgical environment reconstruction.

employed here to the ROI extraction. Four professional tho-
racic surgeons from the Hua Shan Hospital and Yunnan First
People’s Hospital are invited to revise the auto-segmentation
result with manual correction, which is demonstrated in Fig. 3.
The images into the 3-D mesh model were employed the
marching cube algorithm to reconstruct, after the superfluous
mesh cleaning and Laplacian smoothing processing to keep the
ribs, renal, skin, and the lesion for the interventional biopsy
surgery.

2) XR Surgical Visual-Haptic Implementation: The VATS-
XR systems developed in this article mainly include the
development of hardware and software. Fig. 3 shows the
framework of the system. The tactile and visual are two
important indicators of the system. For visual aspects, the
OpenHaptic plugin calls feedback devices to interact with vir-
tual objects, such as collision detection and soft-tissue cutting
and deformation. For visual elements, interactive objects are
rendered more realistically by shader language, to make it
close to the real physical model. UGUI is used to design
the UI interface design of the system. These functions were
finally implemented in Unity3D. Surgical instruments and
force feedback devices are connected through the linker. The
operator holds the surgical instrument to bring the three axes
of the power-feedback device to perform corresponding trans-
formation operations. When the clip of the virtual surgical
instrument interacts with the virtual object, the computer calls
the force feedback device through the OpenHaptic plugin
(Geomagic, USA) to give the corresponding driving force,
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Fig. 4. Diagram of the general software architecture of the Haptic-XR-based
3DUI with the IoMT device integrative implementation. Visual rendering
pipeline conducted from the organ 3-D reconstructed and the surgical envi-
ronment simulation, and haptic rendering includes the soft-tissue deformable
modeling and the force rendering. The IoMT system integrated both visual
and haptic rendering by the human—computer interaction system.

thereby giving the operator a real tactile sense. HTC VIVE
and Logitech camera are used to realize XR display methods.

3) 3DUI Design: Referring to the GPS navigation interface,
we developed a Haptic-XR-based 3DUI with the XR device
and the main parts of the Ul included in both visual and haptic
intro-operation details. Three main kinds of XR display tech-
nologies during the operation have been presented; compared
to the video-based and projection-based XR navigation system,
the see-through display system using a semi-transparent free-
form lens to reflect the digital content overlapped with the
patient on the near-eye micro-display provided an intuitional
and portable surgical experience. In this article, we chose the
see-through XR display pattern with the Microsoft HoloLens
MR head-mounted display (HMD). Since the C-arm image or
ultrasound image is the essential navigational clues during the
intentional surgery, we put the real-time CT images on the
central left part of the 3DUI, as demonstrated in Fig. 3. For
the real-time XR, the navigation interface is constructed in the
top right of the UI, which is the manipulation platform for the
Haptic-XR surgical simulator. We introduced this module to
mimic the real operation in OR. Apart from these two compo-
nents, the coronal, sagittal, and axial CT images synchronously
display the needle track during the surgical simulation as a part
of XR navigation. Referring to the GPS interface, we inte-
grated the navigation clues in the bottom of the 3DUI, which
includes the operation time, intervention depth, force limita-
tion, speed limitation, the matching layer of the tissue, and the
warning of mispuncture during the surgery, as demonstrated
in the bottom of Fig. 4.

C. Model Stealing Attack to the New loMT Platform

In this section, we will show you how to train an imitation
network (Copycat network) by stealing labels from the origi-
nal network (auxiliary classifier GANS). In this article, model
stealing attacks mainly use the fake natural data set to steal
labels from the ACGAN and put these labels and the data
set into the imitation network. From Fig. 4, we can conclude
that this process mainly consists of two steps. The first step
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Experimental results. (a) Precision, recall, and Fi-score comparison between the proposed KNN-ACGAN model and four other general prediction

methods (SVM: support vector machine; RF: random forest; DNN: original deep neural network; and CNN: convolution neural network). It can be seen from
this figure that KNN-ACGAN outperforms other traditional models in precision and Fyi-score, while the recall is slightly lower than the KNN-DNN model.
(b) Performance promotion of the KNN-based prediction model compared to the average-based prediction model in the criterions of precision, recall, and
Fl-score. It can be computed in the following equation: Periterion = [(Criteriongkny — Criteriongyerage)/ Criteriongyerage- It is noticeable in this figure that
almost all models had a performance improvement (from 0.02 to 0.42) when the model used KNN imputation, except for the recall of CNN, the recall of

DNN, and the precision of RF.

is to create a training data set that has a similar structure to
the original data set, but they come from different problem
domains (PDs). So, the data set we have chosen is different
from the original data set. Obviously, in the second step, we
must use the labels and the pseudo data set to train our model.
(In this article, we choose the ACGAN as a Copycat model.)

Even though the data set obtained from the first-line hospital
is used in the original network, we can still download a similar
COVID-19 data set from the public source and then change
its data structure to have a similar structure with the original
data set. By doing this, we can be stealing the corresponding
label from the original model.

Next, we will explain the assignability of adversarial sam-
ples. Suppose that the adversary is interested in classifying
the wrong example and producing a hostile sample w* dif-
ferent from the model in which the class is assigned to the
legal input @ . In the following optimization formula, we can
achieve this:

=% —

" =@ + 65 where 6 = argngng(Z? + ) #g(D).
o

Misleading example a_);, deliberately g calculation model.
However, adversarial samples are often incorrectly classified
as g’ instead of g in practice. For the convenience of discus-
sion, the concept of transferability of adversarial samples is
formalized

Hy(g,g’) = Hg/(z) #g’(?)) +9_7U>) 1@ € Y)H

Set Y represents the expected input distribution solved by the
models g and g’ in the task. We divide the transferability of
adversarial samples into two variables to describe the models
(g, &). The first is the transferability within the technology.
The transferability between different parameter initializations
of the same technology or training models of other data sets
[e.g., ¢ and g are deep learning networks or both support
vector machines (SVMs)] has been defined. Second, for cross-
technology transferability, two technologies can be used to
train models (e.g., g is a deep learning network and g’ is SVM).

TABLE I
PERFORMANCE COMPARISON BETWEEN THE PROPOSED KNN-ACGAN
MODEL AND THE FOUR GENERAL PREDICTION METHODS

Model Precision Recall Fi-score
KNN-SVM 0.75 0.98 0.85
KNN-RF 0.63 0.95 0.75
KNN-DNN 0.81 1.00 0.89
KNN-CNN 0.77 0.98 0.86
KNN-ACGAN 0.92 0.98 0.95

SVM: Support vector machine; RF: Random forest; DNN: Original deep neural
network; CNN: Convolution neural network.

IV. RESULTS
A. KNN-ACGAN Learning Accuracy

Based on the prospective cohort, the results toward
COVID-19 prediction for KNN-ACGAN and the other four
models (KNN-SVM, KNN-RF, KNN-DNN, and KNN-CNN)
are reported in Table I and Fig. 5(a). The evaluation met-
rics include precision, recall, and Fj-score. As shown in
Table I and Fig. 5(a), the highest values indicate that
our proposed KNN-ACGAN model has the best prediction
performance compared to KNN-SVM, KNN-RF, KNN-DNN,
and KNN-CNN.

To evaluate the forecasting performance of KNN imputa-
tion for missing data, we performed a comparison between the
KNN-based prediction model and the average-based prediction
model. The area under the ROC curve (AUC) of the com-
parison result is shown in Fig. 6. In terms of receiver
operating characteristic (ROC), KNN-based models obtain
promotions compared to average-based models. Table II and
Fig. 5(b) report the detailed promotion of the compari-
son of KNN-based models and average-based models under
three performance criteria. It visually shows that all KNN-
based predictive models have more significant improvement
in performance than KNN-based models.

B. Stealing Model Performance for the New loMT Platform

There are some evaluation indicators and corresponding
parameters shown in Table III and Fig. 7(a). A higher number
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Fig. 7. Detailed performance for the prediction model. (a) KNN-ACGAN. (b) Copycat. (Normal represents the predicted performance in normal people;

COVID represents the predicted performance in COVID-19 patients; macro is the macro average performance in test data; and weight is the weighted average

performance in train data.)

TABLE II
PROMOTION OF THE KNN-BASED PREDICTION MODEL
COMPARED TO THE AVERAGE-BASED PREDICTION
MODEL IN PRECISION, RECALL, AND F1-SCORE

TABLE III
VALUES OF DIFFERENT INDICATORS
OUTPUTTED BY THE TARGET MODEL

KNN-based
model vs. SVM RF DNN CNN  ACGAN
Average-
based model
Poprecision 0.03 -0.05 0.42 0.33 0.16
Precall 0.02 0.41 0.00 -0.02 0.01
PFi-score 0.02 0.12 0.24 0.18 0.07

Object Precision Recall Fi-score Support
NORMAL 1.00 0.97 0.99 68
COVID-19 0.78 1.00 0.88 7
Macro avg 0.89 0.99 0.93 75

Weighted avg 0.98 0.97 0.97 75
Accuracy — — 0.97 75

Criteriongyy — Criteriongperage

Periterion = NN
criterton Criteriongyerage

on the same scale indicates better performance for the model.
The Fi-score for normal people and COVID-19 patients in
Table III are 0.99 and 0.88, respectively, which indicates that
the original network has a strong performance in predicting
COVID-19 and non-COVID-19 data.

Table IV and Fig. 8(b) show the different performance indi-
cators that Copycat network outputs after training with stolen
labels and the corresponding data set. Because we selected

data between PD and non-PD (NPD) when we selected the
Copycat data set, we still got a 79% accuracy rate with many
irrelevant data effects. Based on Tables Il and IV, we can
observe that the Copycat network achieves approximately to
the results of the original data.

V. DISCUSSION

In order to develop an intelligent and trustworthy
COVID-19 diagnostic IoMT through XR and DNN, the XR-
based framework has been conducted. Based on the training
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TABLE IV
VALUES OF DIFFERENT INDICATORS OUTPUTTED
BY THE COPYCAT MODEL

Object(copycat) Precision Recall Fi-score Support
NORMAL 1.00 0.77 0.87 196
COVID-19 0.38 1.00 0.55 28
Macro avg 0.69 0.88 0.71 224

Weighted avg 0.92 0.79 0.83 224
Accuracy — — 0.79 224

results, the COVID-19 can be accomplished diagnose with or
without assistance, so that visual feedback and numerical feed-
back are provided. Offering includes displaying a real-time
3-D representation of the surgical implementations.

A. Performance by ACGAN-Based COVID-19 loMT

As shown in Table I, the proposed KNN-ACGAN model
has excellent performance. Compared with the CNN model,
the precision and F;-score on the KNN-ACGAN increased by
15% and 9%, respectively. Compared with the DNN model,
the precision and F;-score on the KNN-ACGAN increased by
11% and 6%, respectively. It indicates that the ACGAN model
can obtain more accurate features and more precise prediction
results after the preprocessing of KNN for missing data and the
resampling processing in training. We used KNN (k = 1) to fill
up the missing data and the oversampling to solve the problem
of imbalanced samples. In Fig. 5 and Table II, where the
performance of KNN is evaluated, the AUC of the KNN-based
models has increased by 1%—-8% compared with average-based
models. Moreover, except for the Pprecision 0f KNN-RF and the
Precanl of KNN-CNN, all the KNN-based models have a pro-
motion in which Pri-score have increased by 2%—24%, Precall
have increased by 2%—41%, and Pprecision have increased by
3%—41%. More promising information can be obtained from
the confusion matrix in Fig 6. All the experiments demon-
strate that KNN-ACGAN is a promising technology that can
be used effectively in COVID-19 prediction.

In the offline process, we use real-world clinical
COVID-19 data to train the proposed KNN-ACGAN model.
After optimizing and adjusting the model parameters, the
model is saved. The new experiments with the protected
model are performed in the online application. According to
the predicted feedback, whether the patients are infected are
predicted and displayed on the monitor. Besides, the inter-
pretability based on CEM can provide the importance for
the clinical features, which gives the KNN-ACGAN model
the medical insight and ensure the reliability of our proposed
COVID-19 intelligent prediction system.

B. Performance by IoMT Stealing Model

As shown in Fig 10, the obfuscated matrix is an error matrix
that can be used to evaluate the performance of supervised
learning algorithms. Therefore, we can see more clearly that
the prediction set is a mixed part of the real set through the
confusion matrix. We can see from Fig. 9, true positive (TP)
and false negative (FN) account for a large proportion in the
confounding matrix, among which TP accounts for the largest
proportion, which has been directly reflected that the ACGAN
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Fig. 8. Confusion matrix for different algorithms. (a) AVG-SVM. (b) KNN-
SVM. (c¢) AVG-RF. (d) KNN-RF. (e) AVG-DNN. (f) KNN-DNN. (g) AVG-
CNN. (h) KNN-CNN. (i) AVG-ACGAN. (j) KNN-ACGAN. We can see from
Fig. 10 that it is hardly for KNN-ACGAN to misjudge with six errors in
total 448.

network can accurately predict the data of patients with and
without COVID-19.

The ROC curve is drawn according to a series of differ-
ent dichotomies (cut-off values or determining thresholds),
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ical feature influences their decision for whether a patient is infected with
COVID-19. It can be seen from Fig. 6 that lymphocyte quantity, mitochon-
dria quantity, and whether patients have the above symptoms (from neutrophil
to no previous features) are the top-3 risk factors affecting the model to
estimate the probability of patients getting COVID-19.
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Fig. 10. Confusion matrix diagram based on the ACGAN model and ROC
curve using different models for data prediction. It can be seen that Copy
DNN has a better performance with the AUC area of 0.90, which is only
0.08 lower than that of the KNN-ACGAN model. Moreover, regarding the
confusion matrix, all the patients with COVID-19 are tested correctly, while
a few numbers of ordinary people are tested for COVID-19.

unlike traditional evaluation methods, the ROC curve does
not need to divide experimental results into two categories
for statistical analysis, and all points on the curve reflect the
same receptivity. The ROC curve is judged by which line in
the curve can get the fastest and most infinitely close to an
ordinate of 1, indicating that the model represented by that
curve will work best. As we can see from Fig. 10, KNN-
ACGAN can have the best effect on the classification of new
crown data. ACGAN can more accurately predict the data of
COVID-19 patients and non-COVID-19 patients by combin-
ing the results of the ROC curve and confounding matrix. At
the same time, the Copycat network can also achieve similar
effects to the original network.

VI. CONCLUSION

In this article, we proposed a trustworthy and intelli-
gent COVID-19 diagnostic IoMT through XR and DNNs.
We developed a customized novel ACGAN-based intelli-
gent prediction algorithm that was addressed to learn a new
COVID-19 prediction model. Apart from that, to achieve a bet-
ter human ergonomics performance, we visualized all the
navigational clues from our Haptic-AR guide system. We are
among the first to apply deep learning for the COVID-19 [oMT

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 21, NOVEMBER 1, 2021

prediction and remote surgical plan cues, which may pro-
vide a new strategy for COVID-19 therapy. In the future, we
will improve this IoMT system in both hardware design and
deep learning algorithms promotion, aims to create a platform
for both academia and industry to the COVID-19 track and
treatment.
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